Estimation and control of open quantum systems 220517

Optical quantum computers with quantum teleportation

Akira Furusawa

Department of Applied Physics, School of Engineering, The University of Tokyo RIKEN Center for Quantum Computing

Abstract

We are now pursuing the realization of large-scale fault-tolerant universal optical quantum computers with our original continuous-variable quantum teleportation methodology. There are several points. One is that we can build a logical qubit for quantum error correction with a single pulse of light. It is totally different situation from other systems like super-conducting qubits, spins, and ions, which are two-level systems and thus they need many physical qubits and entanglement among them for building a logical qubit. We can replace the fragile multipartite entanglement with quantum correlation of photons in a single pulse of light. Another point of our methodology is that we do not have to be worried about decoherence of the system. We are using our original time-domain multiplexing methodology and make a measurement before the decoherence. We can continue quantum computing forever in principle.